A general linear non-Gaussian state-space model: Identifiability, identification, and applications

نویسندگان

  • Kun Zhang
  • Aapo Hyvärinen
  • Wee Sun Lee
چکیده

State-space modeling provides a powerful tool for system identification and prediction. In linear state-space models the data are usually assumed to be Gaussian and the models have certain structural constraints such that they are identifiable. In this paper we propose a non-Gaussian state-space model which does not have such constraints. We prove that this model is fully identifiable. We then propose an efficient two-step method for parameter estimation: one first extracts the subspace of the latent processes based on the temporal information of the data, and then performs multichannel blind deconvolution, making use of both the temporal information and non-Gaussianity. We conduct a series of simulations to illustrate the performance of the proposed method. Finally, we apply the proposed model and parameter estimation method on real data, including major world stock indices and magnetoencephalography (MEG) recordings. Experimental results are encouraging and show the practical usefulness of the proposed model and method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions

This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

A General Linear Non-Gaussian State-Space Model

State-space modeling provides a powerful tool for system identification and prediction. In linear state-space models the data are usually assumed to be Gaussian and the models have certain structural constraints such that they are identifiable. In this paper we propose a non-Gaussian state-space model which does not have such constraints. We prove that this model is fully identifiable. We then ...

متن کامل

Identifiability Scaling Laws in Bilinear Inverse Problems

A number of ill-posed inverse problems in signal processing, like blind deconvolution, matrix factorization, dictionary learning and blind source separation share the common characteristic of being bilinear inverse problems (BIPs), i.e. the observation model is a function of two variables and conditioned on one variable being known, the observation is a linear function of the other variable. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011